Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Diagnostics (Basel) ; 13(9)2023 Apr 25.
Article in English | MEDLINE | ID: covidwho-2319071

ABSTRACT

Stethoscopes were originally designed for the auscultation of a patient's chest for the purpose of listening to lung and heart sounds. These aid medical professionals in their evaluation of the cardiovascular and respiratory systems, as well as in other applications, such as listening to bowel sounds in the gastrointestinal system or assessing for vascular bruits. Listening to internal sounds during chest auscultation aids healthcare professionals in their diagnosis of a patient's illness. We performed an extensive literature review on the currently available stethoscopes specifically for use in chest auscultation. By understanding the specificities of the different stethoscopes available, healthcare professionals can capitalize on their beneficial features, to serve both clinical and educational purposes. Additionally, the ongoing COVID-19 pandemic has also highlighted the unique application of digital stethoscopes for telemedicine. Thus, the advantages and limitations of digital stethoscopes are reviewed. Lastly, to determine the best available stethoscopes in the healthcare industry, this literature review explored various benchmarking methods that can be used to identify areas of improvement for existing stethoscopes, as well as to serve as a standard for the general comparison of stethoscope quality. The potential use of digital stethoscopes for telemedicine amidst ongoing technological advancements in wearable sensors and modern communication facilities such as 5G are also discussed. Based on the ongoing trend in advancements in wearable technology, telemedicine, and smart hospitals, understanding the benefits and limitations of the digital stethoscope is an essential consideration for potential equipment deployment, especially during the height of the current COVID-19 pandemic and, more importantly, for future healthcare crises when human and resource mobility is restricted.

2.
5th International Conference on Big Data and Artificial Intelligence, BDAI 2022 ; : 26-33, 2022.
Article in English | Scopus | ID: covidwho-2051932

ABSTRACT

The COVID-19 outbreak presents a major challenge in diagnosing and monitoring respiratory diseases. IoT has the potential to address the challenges by remotely providing patients with rich information about respiratory health. However, current IoT-based health monitoring systems do not provide users with sufficient information to access the rich information in Health Social Network (HSN). We developed PhysioVec, a framework for searching HSN using breath sounds. PhysioVec consists of three components: Local Recurrent Transformer (LRT), a Multivariate radial-basis Logistic Interpreter (MLI), and an existing sentence embedding module. LRT combines local attention and recurrent Transformer to reduce overfitting and improve performance in the segmentation of breathing sounds. Physiological information detected from breathing sounds is used to search for relevant health information. PhysioVec achieved 100%., 59.8%., 92.2%., and 100% precision in the top one search results for breath sound with the common cold, influenza, pneumonia, and bronchitis, respectively. Our proposed framework allows users to search HSN for useful information just by recording their breathing sounds on mobile phones. © 2022 IEEE.

3.
Diagnostics (Basel) ; 12(4)2022 Apr 07.
Article in English | MEDLINE | ID: covidwho-1785560

ABSTRACT

Problem-Since the outbreak of the COVID-19 pandemic, mass testing has become essential to reduce the spread of the virus. Several recent studies suggest that a significant number of COVID-19 patients display no physical symptoms whatsoever. Therefore, it is unlikely that these patients will undergo COVID-19 testing, which increases their chances of unintentionally spreading the virus. Currently, the primary diagnostic tool to detect COVID-19 is a reverse-transcription polymerase chain reaction (RT-PCR) test from the respiratory specimens of the suspected patient, which is invasive and a resource-dependent technique. It is evident from recent researches that asymptomatic COVID-19 patients cough and breathe in a different way than healthy people. Aim-This paper aims to use a novel machine learning approach to detect COVID-19 (symptomatic and asymptomatic) patients from the convenience of their homes so that they do not overburden the healthcare system and also do not spread the virus unknowingly by continuously monitoring themselves. Method-A Cambridge University research group shared such a dataset of cough and breath sound samples from 582 healthy and 141 COVID-19 patients. Among the COVID-19 patients, 87 were asymptomatic while 54 were symptomatic (had a dry or wet cough). In addition to the available dataset, the proposed work deployed a real-time deep learning-based backend server with a web application to crowdsource cough and breath datasets and also screen for COVID-19 infection from the comfort of the user's home. The collected dataset includes data from 245 healthy individuals and 78 asymptomatic and 18 symptomatic COVID-19 patients. Users can simply use the application from any web browser without installation and enter their symptoms, record audio clips of their cough and breath sounds, and upload the data anonymously. Two different pipelines for screening were developed based on the symptoms reported by the users: asymptomatic and symptomatic. An innovative and novel stacking CNN model was developed using three base learners from of eight state-of-the-art deep learning CNN algorithms. The stacking CNN model is based on a logistic regression classifier meta-learner that uses the spectrograms generated from the breath and cough sounds of symptomatic and asymptomatic patients as input using the combined (Cambridge and collected) dataset. Results-The stacking model outperformed the other eight CNN networks with the best classification performance for binary classification using cough sound spectrogram images. The accuracy, sensitivity, and specificity for symptomatic and asymptomatic patients were 96.5%, 96.42%, and 95.47% and 98.85%, 97.01%, and 99.6%, respectively. For breath sound spectrogram images, the metrics for binary classification of symptomatic and asymptomatic patients were 91.03%, 88.9%, and 91.5% and 80.01%, 72.04%, and 82.67%, respectively. Conclusion-The web-application QUCoughScope records coughing and breathing sounds, converts them to a spectrogram, and applies the best-performing machine learning model to classify the COVID-19 patients and healthy subjects. The result is then reported back to the test user in the application interface. Therefore, this novel system can be used by patients in their premises as a pre-screening method to aid COVID-19 diagnosis by prioritizing the patients for RT-PCR testing and thereby reducing the risk of spreading of the disease.

4.
Anesthesiol Clin ; 39(3): 403-414, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1292587

ABSTRACT

Ventilation or breathing is vital for life yet is not well monitored in hospital or at home. Respiratory rate is a neglected vital sign and tidal volumes together with breath sounds are checked infrequently in many patients. Medications with the potential to depress ventilation are frequently administered, and may be accentuated by obesity causing airway obstruction in the form of sleep apnea. Sepsis may adversely affect ventilation by causing an increase in respiratory rate, often a very early sign of infection. Changes in ventilation may be early signs of deterioration in the patient.


Subject(s)
Airway Obstruction , Capnography , Humans , Monitoring, Physiologic , Oximetry
5.
Respiration ; 99(9): 755-763, 2020.
Article in English | MEDLINE | ID: covidwho-910309

ABSTRACT

BACKGROUND: Effective auscultations are often hard to implement in isolation wards. To date, little is known about the characteristics of pulmonary auscultation in novel coronavirus (COVID-19) pneumonia. OBJECTIVES: The aim of this study was to explore the features and clinical significance of pulmonary auscultation in COVID-19 pneumonia using an electronic stethoscope in isolation wards. METHODS: This cross-sectional, observational study was conducted among patients with laboratory-confirmed COVID-19 at Wuhan Red-Cross Hospital during the period from January 27, 2020, to February 12, 2020. Standard auscultation with an electronic stethoscope was performed and electronic recordings of breath sounds were analyzed. RESULTS: Fifty-seven patients with average age of 60.6 years were enrolled. The most common symptoms were cough (73.7%) during auscultation. Most cases had bilateral lesions (96.4%) such as multiple ground-glass opacities (69.1%) and fibrous stripes (21.8%). High-quality auscultation recordings (98.8%) were obtained, and coarse breath sounds, wheezes, coarse crackles, fine crackles, and Velcro crackles were identified. Most cases had normal breath sounds in upper lungs, but the proportions of abnormal breath sounds increased in the basal fields where Velcro crackles were more commonly identified at the posterior chest. The presence of fine and coarse crackles detected 33/39 patients with ground-glass opacities (sensitivity 84.6% and specificity 12.5%) and 8/9 patients with consolidation (sensitivity 88.9% and specificity 15.2%), while the presence of Velcro crackles identified 16/39 patients with ground-glass opacities (sensitivity 41% and specificity 81.3%). CONCLUSIONS: The abnormal breath sounds in COVID-19 pneumonia had some consistent distributive characteristics and to some extent correlated with the radiologic features. Such evidence suggests that electronic auscultation is useful to aid diagnosis and timely management of the disease. Further studies are indicated to validate the accuracy and potential clinical benefit of auscultation in detecting pulmonary abnormalities in COVID-19 infection.


Subject(s)
Auscultation , COVID-19/physiopathology , Lung/physiopathology , Respiratory Sounds/physiopathology , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/diagnosis , COVID-19/diagnostic imaging , COVID-19/therapy , China , Cough/physiopathology , Cross-Sectional Studies , Electrical Equipment and Supplies , Female , Glucocorticoids/therapeutic use , Humans , Lung/diagnostic imaging , Male , Middle Aged , Oxygen Inhalation Therapy , Respiration, Artificial , SARS-CoV-2 , Sensitivity and Specificity , Severity of Illness Index , Smartphone , Sound Spectrography , Sputum , Stethoscopes , Tomography, X-Ray Computed , Young Adult , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL